NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia.

نویسندگان

  • Renatta Knox
  • Angela M Brennan-Minnella
  • Fuxin Lu
  • Diana Yang
  • Takanobu Nakazawa
  • Tadashi Yamamoto
  • Raymond A Swanson
  • Donna M Ferriero
  • Xiangning Jiang
چکیده

BACKGROUND AND PURPOSE The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor is phosphorylated by the Src family kinase Fyn in brain, with tyrosine (Y) 1472 as the major phosphorylation site. Although Y1472 phosphorylation is important for synaptic plasticity, it is unknown whether it is involved in NMDA receptor-mediated excitotoxicity in neonatal brain hypoxia-ischemia (HI). This study was designed to elucidate the specific role of Y1472 phosphorylation of NR2B in neonatal HI in vivo and in NMDA-mediated neuronal death in vitro. METHODS Neonatal mice with a knockin mutation of Y1472 to phenylalanine (YF-KI) and their wild-type littermates were subjected to HI using the Vannucci model. Brains were scored 5 days later for damage using cresyl violet and iron staining. Western blotting and immunoprecipitation were performed to determine NR2B tyrosine phosphorylation. Expression of NADPH oxidase subunits and superoxide production were measured in vivo. NMDA-induced calcium response, superoxide formation, and cell death were evaluated in primary cortical neurons. RESULTS After neonatal HI, YF-KI mice have reduced expression of NADPH oxidase subunit gp91phox and p47phox and superoxide production, lower activity of proteases implicated in necrotic and apoptotic cell death, and less brain damage when compared with the wild-type mice. In vitro, YF-KI mutation diminishes superoxide generation in response to NMDA without effect on calcium accumulation and inhibits NMDA and glutamate-induced cell death. CONCLUSIONS Upregulation of NR2B phosphorylation at Y1472 after neonatal HI is involved in superoxide-mediated oxidative stress and contributes to brain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia

Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...

متن کامل

TGFß1 Stimulates the Over-Production of White Matter Astrocytes from Precursors of the “Brain Marrow” in a Rodent Model of Neonatal Encephalopathy

BACKGROUND In children born prematurely and those surviving cerebral ischemia there are white matter abnormalities that correlate with neurological dysfunction. Since this injury occurs in the immature brain, when the majority of subventricular zone (SVZ) cells generate white matter oligodendrocytes, we sought to study the effect this injury has on gliogenesis from the SVZ. We hypothesized that...

متن کامل

Neonatal hypoxia-ischemia differentially upregulates MAGUKs and associated proteins in PSD-93-deficient mouse brain.

BACKGROUND AND PURPOSE Postsynaptic density (PSD)-93 and PSD-95 are the major membrane-associated guanylate kinases (MAGUKs) at excitatory synapses of the brain linking the N-methyl-d-aspartate receptor (NMDAR) with neuronal nitric oxide synthase (nNOS), which contributes to cell death after neonatal hypoxia-ischemia (HI). We investigated whether deletion of PSD-93 would dissociate the NMDAR fr...

متن کامل

Disruption of the Serotonergic System after Neonatal Hypoxia-Ischemia in a Rodent Model

Identifying which specific neuronal phenotypes are vulnerable to neonatal hypoxia-ischemia, where in the brain they are damaged, and the mechanisms that produce neuronal losses are critical to determine the anatomical substrates responsible for neurological impairments in hypoxic-ischemic brain-injured neonates. Here we describe our current work investigating how the serotonergic network in the...

متن کامل

NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity.

Phosphorylation of neural proteins in response to a diverse array of external stimuli is one of the main mechanisms underlying dynamic changes in neural circuitry. The NR2B subunit of the NMDA receptor is tyrosine-phosphorylated in the brain, with Tyr-1472 its major phosphorylation site. Here, we generate mice with a knockin mutation of the Tyr-1472 site to phenylalanine (Y1472F) and show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 45 10  شماره 

صفحات  -

تاریخ انتشار 2014